Keyframe-based visual-inertial odometry using nonlinear optimization
نویسندگان
چکیده
Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate Visual-Inertial Odometry or Simultaneous Localization and Mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that non-linear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual-inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochasic cloning sliding-window filter. This competititve reference implementation performs tightly-coupled filtering-based visual-inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy.
منابع مشابه
REBECQ, HORSTSCHAEFER, SCARAMUZZA: EVENT-BASED VISUAL-INERTIAL ODOMETRY1 Real-time Visual-Inertial Odometry for Event Cameras using Keyframe-based Nonlinear Optimization
Event cameras are bio-inspired vision sensors that output pixel-level brightness changes instead of standard intensity frames. They offer significant advantages over standard cameras, namely a very high dynamic range, no motion blur, and a latency in the order of microseconds. We propose a novel, accurate tightly-coupled visual-inertial odometry pipeline for such cameras that leverages their ou...
متن کاملReal-time Visual-Inertial Odometry for Event Cameras using Keyframe-based Nonlinear Optimization
Event cameras are bio-inspired vision sensors that output pixel-level brightness changes instead of standard intensity frames. They offer significant advantages over standard cameras, namely a very high dynamic range, no motion blur, and a latency in the order of microseconds. We propose a novel, accurate tightly-coupled visual-inertial odometry pipeline for such cameras that leverages their ou...
متن کاملEnhancement Strategies for Frame-to-frame Uas Stereo Visual Odometry
Autonomous navigation of indoor unmanned aircraft systems (UAS) requires accurate pose estimations usually obtained from indirect measurements. Navigation based on inertial measurement units (IMU) is known to be affected by high drift rates. The incorporation of cameras provides complementary information due to the different underlying measurement principle. The scale ambiguity problem for mono...
متن کاملAdaptive Monocular Visual–Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices
Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applic...
متن کاملRobust Onboard Visual SLAM for Autonomous MAVs
This paper presents a visual simultaneous localization and mapping (SLAM) system consisting of a robust visual odometry and an efficient back-end with loop closure detection and pose-graph optimization. Robustness of the visual odometry is achieved by utilizing dual cameras pointing different directions with no overlap in their respective fields of view mounted on an micro aerial vehicle (MAV)....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Robotics Res.
دوره 34 شماره
صفحات -
تاریخ انتشار 2015